A Fill in the blanks

1. Angle of reflection equals the angle of incidence.

2. Light travelling from glass into air is bent away the normal. (Note:-Glass is denser than air)
3. Light travelling from air into water is bent toward the normal. (Note:-water is denser than air)

4. When moving from air into glass the speed of light decreases
5. When moving from water into air the speed of light increases
6. When moving from a medium into another medium the frequency of light does not change.
7. Sound waves travel in matter and cannot travel through vacuum.
8. The unit of frequency is $\mathbf{H e r t z}(\mathbf{H z})$.
9. Reflection of sound waves is responsible for Echo

10.Light waves travel in straight lines.
11.The speed of light in vacuum is $\mathbf{3 0 0 , 0 0 0 , 0 0 0} \mathbf{~ m} / \mathbf{s}$.

12 . Sound waves are caused by vibrations.

longitudinal waves
13. The direction of vibrations in a transverse wave is perpendicular to the direction of the wave.
14.The direction of vibrations in a longitudinal wave is the same direction of the direction of the wave.
15.Light waves are transverse waves.
16.Sound waves are Longitudinal.
17. A perpendicular line segment drawn at the point of incidence is called normal.
18.The point with the maximum displacement is called crest.
wavelength

19.The point with the minimum displacement is called trough.
20.Time taken of one complete cycle of oscillation (wave) is called period.
21.Number of waves (oscillations) performed by a particle per unit time(second) is called frequency.
22.The distance between any two successive crests or two troughs is called wavelength.

B_Answer the following questions.

1. A wave travels with a frequency $(f)=10 \mathrm{~Hz}$. How much is the period (T) ?

$$
T=\frac{1}{10}=0.1 \mathrm{~s}
$$

2. A sound wave travels with a wavelength $(\lambda)=0.1 \mathrm{~m}$, and a frequency $(f)=$ 3500 Hz . How much is the wave speed (v) ?

$$
v=f \lambda=3500 \times 0.1=350 \mathrm{~m} / \mathrm{s}
$$

3. A wave travels with a wavelength $(\lambda)=5 \mathrm{~m}$, its wave speed $(v)=200 \mathrm{~m} / \mathrm{s}$. Find the frequency (f).

$$
f=\frac{v}{\lambda}=\frac{200}{5}=40 \mathrm{~Hz}
$$

4. The following figure represents a wave at fixed location. How much is the period of the wave? $\mathbf{1 0 ~ s}$,

5. The figure below shows waves passing a location point in 1 second.
a. \quad Number of waves $=5$
b. \quad Frequency $(\mathbf{f})=\mathbf{5} \mathbf{~ H z}$
c. \quad Period $(\mathbf{T})=\frac{1}{5}=0.2 \mathrm{~s}$

6. Which wave may represent a sound wave/ light wave/transverse/longitudinal waves?

Transveres

7. Clearly draw and label:

a) Normal
b) Angle of incidence
c) Refracted ray
d) Angle of refraction

8. An explosion happened in front of a wall. The wall is 720 m far from the location of the explosion as shown in the diagram below. The speed of sound is $340 \mathrm{~m} / \mathrm{s}$.

Calculate the echo time.

Echo time $=2 \times \frac{\text { distance to } \text { wall }}{\text { speed of sound }}=2 \times \frac{720}{340}=4 \mathrm{~s}$
9. Label the diagram:

1. Incident ray
2. Reflected ray
3. Normal
4. Angle of incidence
5. Angle of reflection

