

Unit No/Name	9	Subject Name		Teacher Name		Date
Waves, sound and light		Waves Properties 1.3 & 1.4		Ayman Al Omari		
Student No:		Student Name:		Gro	oup:	VEDC+

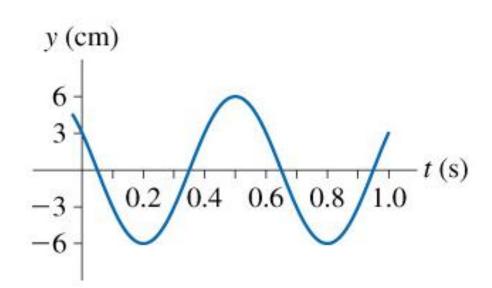
A wave travelling in the positive x direction is showed in the figure. Find the amplitude,

wavelength, period, and speed of the wave if it has a frequency (f) of 4 Hz. Find the following.

1)

- a) Trough (the point with the minimum displacement) is at y = -6
- b) Crest (the point with the maximum displacement) is at y = +6
- c) Amplitude (A) = 6 cm
- d) Wavelength (λ) = 24 cm
- e) Period (T) = $\frac{1}{frequency}$

Or
$$T = \frac{1}{f} = \frac{1}{4} = 0.25 s$$


f) Wave speed= *frequency* × wavelength

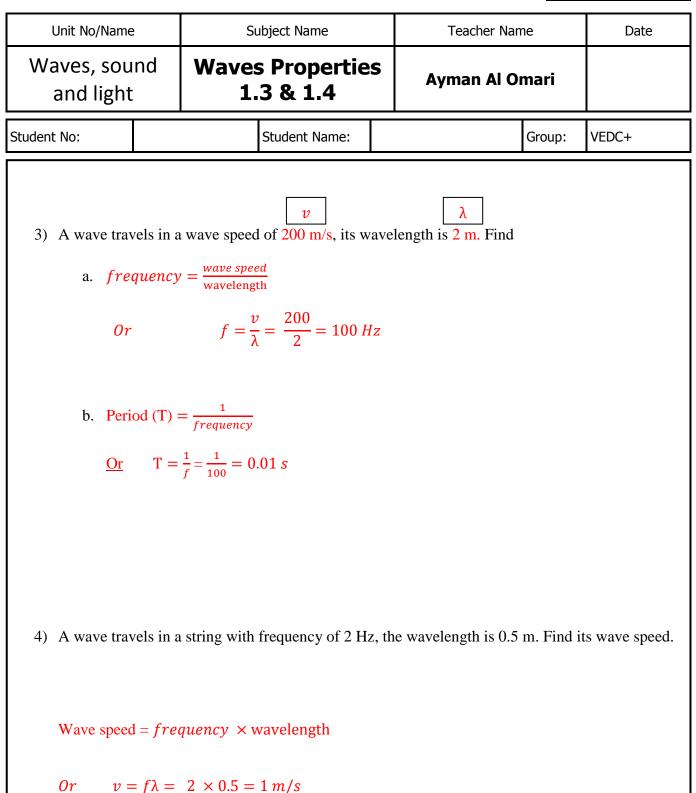
$$Or \qquad v = f\lambda = 4 \times 24 = 96 \ cm/s$$

Unit No/Name	5	Subject Name			Teacher Name		Date
Waves, sound and light		Waves Properties 1.3 & 1.4		S	Ayman Al Omari		
Student No:		S	itudent Name:			Group:	VEDC+

2) The figure is a history graph at x = 0 m of a wave moving to the right at 2 m/s.

- a) What is the amplitude of this wave? 6 cm
- b) What is the period of this wave? T = 0.8 0.2 = 0.6 s
- c) What is the frequency of this wave?

fequency =
$$\frac{1}{\text{period}}$$


Or
$$f = \frac{1}{T} = \frac{1}{0.6} = 1.67 \, Hz$$

d) What is the wavelength of this wave?

wavelength =
$$\frac{wave \ speed}{frequency}$$

$$0r \qquad \qquad \lambda = \frac{v}{f} = \frac{2}{1.67} = 1.2 \ cm$$

Unit No/Name	2	Subject Name			Teacher Name		Date
Waves, sound and light		Waves Properties 1.3 & 1.4		S	Ayman Al Omari		
Student No:		Stu	udent Name:			Group:	VEDC+

5) The frequency of a wave in a spring is 4 Hz, and the wave speed is 6 m/s. Find the wave length.

wavelength
$$= \frac{wave \ speed}{frequency}$$

$$Or \qquad \qquad \lambda = \frac{v}{f} = \frac{6}{4} = 1.2 \ m$$